Dr Natalia Martsinovich

School of Mathematical and Physical Sciences

Level 1 Coordinator

Senior Lecturer in Theoretical Chemistry

N Martsinovich
Profile picture of N Martsinovich
n.martsinovich@sheffield.ac.uk
+44 114 222 9562

Full contact details

Dr Natalia Martsinovich
School of Mathematical and Physical Sciences
Dainton Building
13 Brook Hill
Sheffield
S3 7HF
Profile

Dr Natalia Martsinovich obtained her first degree in Chemistry from the Belarusian State University in 2000. She then obtained a PhD in Theoretical Chemistry from the University of Sussex in 2005, where she also worked as a temporary Lecturer in Physical Chemistry in 2003-04.

She was a postdoctoral researcher in the Department of Physics at King’s College London (2004-08), and in the Department of Chemistry at the University of Warwick (2008-13). In 2013 she was appointed Lecturer at the University of Sheffield.

Qualifications
  • FHEA
  • MRSC
  • MInstP
Research interests

My research is focussed on studying the properties of materials and surface-adsorbate interfaces and processes taking place at these materials and interfaces. Important applications include photovoltaics and photocatalysis. We use a range of theoretical methods, mainly density-functional theory, and also charge transfer theory and molecular mechanics.

Photovoltaics

Photovoltaics uses solar cells to convert solar energy into electricity. Several types of solar cells have been developed; the current market leaders – silicon solar cells – are efficient but expensive. Alternative solar cell technologies are rapidly developing; in particular, solar cells based on perovskite materials have achieved excellent efficiencies, although their low stability remains a challenge. We study the properties of perovskite materials, in collaboration with the group of Prof. D. Lidzey in the Department of Physics.

Photocatalysis

Photocatalysis is a process which converts the energy of the Sun into the energy of chemical reactions. It has important current and potential applications, such as photocatalytic decomposition of pollutants in water and air, splitting of water into oxygen and hydrogen to produce "clean" environmentally friendly hydrogen fuel, and CO2 reduction which has the potential to clean up CO2 from the atmosphere and convert it to useful chemicals. We study various photocatalyst materials, such as graphitic carbon nitride, TiO2 and its composites with graphene-based materials, to evaluate their light absorption and electron-hole separation properties. We also study the interaction of TiO2 with pollutants in a collaborative project with Prof. S. Patwardhan in Chemical & Biological Engineering, to design new photocatalysts for water purification.

Soil minerals/carbon interaction

Soils contain large amounts of organic carbon, which is important both for capturing CO2 from the atmosphere, for growing crops, and more broadly for maintaining the stability of soils. However, carbon is being lost from soils because of the increase in intensive agriculture; it is therefore essential to keep replenishing the carbon content in soils. We are modelling the interaction of soil minerals with organic carbon, to identify organic molecular structures that bind most strongly to minerals in soil (with Al2O3 as a model mineral). The objective is to identify naturally abundant molecules or polymers suitable for adding to soil in agriculture.

Molecular self-assembly

Molecular self-assembly is a process whereby molecules assemble into ordered patterns, thanks to specific interactions between these molecules. These ordered structures have the potential to be used as building blocks in molecular electronics. However, to use them in any practical applications, we need to be able to understand and control their structures. We model the structures and dynamics of two-dimensional assemblies of organic molecules and metal-organic complexes on surfaces, in collaboration with the experimental group of M. Lackinger in Munich.

Publications

Journal articles

  • Wigglesworth MJ, Ma R, Martsinovich N & Vernuccio S (2025) . Chemical Engineering Journal, 523.
  • Rano NA & Martsinovich N (2025) . The Journal of Physical Chemistry A, 129(17).
  • Hamdan S, Wigglesworth MJ, Muscetta M, Ma R, Helal MI, Martsinovich N, Palmisano G & Vernuccio S (2025) . International Journal of Hydrogen Energy, 118, 394-406.
  • Yang J, Xiong L, Wang C, Luo L, Jing L, Martsinovich N & Tang J (2025) . Advanced Energy Materials, 15(9).
  • Zhang F, Zhou S & Martsinovich N (2025) . Journal of Physics: Conference Series, 2961(1).
  • Yang J, Xiong L, Wang C, Luo L, Jing L, Martsinovich N & Tang J (2025) . Advanced Energy Materials, 15(9).
  • Mulay MR, Patwardhan SV & Martsinovich N (2024) . Catalysts, 14(11).
  • Nycz JE, Martsinovich N, Wantulok J, Chen T, Książek M & Kusz J (2024) . Molecules, 29(6).
  • Yong X, Nagaraja T, Krishnamoorthy R, Guanes A, Das SR & Martsinovich N (2024) . ACS Applied Nano Materials, 7(16), 18386-18397.
  • Garrote Cañas AM, Yong X, Alenezi MS, Martsinovich N & Sergeeva NN (2024) . Dyes and Pigments, 222.
  • Li X, Wang C, Yang J, Xu Y, Yang Y, Yu J, Delgado JJ, Martsinovich N, Sun X, Zheng X-S , Huang W et al (2023) . Nature communications, 14(1), 6343.
  • Xie J, Li X, Guo J, Luo L, Delgado JJ, Martsinovich N & Tang J (2023) . Nature communications, 14(1), 4431.
  • Ahmad A & Martsinovich N (2023) . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2250).
  • Mulay MR & Martsinovich N (2023) . Molecular Physics.
  • Ahmad A & Martsinovich N (2022) . RSC Advances, 12(42), 27604-27615.
  • Auty AJ, Mansouriboroujeni N, Nagaraja T, Chekulaev D, Sorensen CM, Das SR, Martsinovich N & Chauvet AAP (2022) . The Journal of Physical Chemistry C, 126(18), 7949-7955.
  • Hartley GO & Martsinovich N (2021) . Faraday Discussions, 227, 341-358.
  • Ochs O, Martsinovich N, Heckl WM & Lackinger M (2020) . The Journal of Physical Chemistry Letters, 11(17), 7320-7326.
  • Ochs O, Hocke M, Spitzer S, Heckl WM, Martsinovich N & Lackinger M (2020) . Chemistry of Materials, 32(12), 5057-5065.
  • Gillespie PNO & Martsinovich N (2019) . ACS Appl Mater Interfaces, 11(35), 31909-31922.
  • Freestone BG, Smith JA, Piana G, Kilbride RC, Parnell AJ, Sortino L, Coles DM, Ball OB, Martsinovich N, Thompson CJ , Alanazi TI et al (2019) . Journal of Materials Chemistry A, 7(18), 11104-11116.
  • Lischka M, Dong R, Wang M, Martsinovich N, Fritton M, Grossmann L, Heckl WM, Feng X & Lackinger M (2019) . Chemistry – A European Journal, 25(8), 1975-1983.
  • White TW, Martsinovich N, Troisi A & Costantini G (2018) . Journal of Physical Chemistry C, 122(31), 17954-17962.
  • Lischka M, Michelitsch GS, Martsinovich N, Eichhorn J, Rastgoo-Lahrood A, Strunskus T, Breuer R, Reuter K, Schmittel M & Lackinger M (2018) . NANOSCALE, 10(25), 12035-12044.
  • Wang Y, Bayazit MK, Moniz SJA, Ruan Q, Lau CC, Martsinovich N & Tang J (2017) . Energy and Environmental Science, 10(7), 1643-1651.
  • Spitzer S, Helmle O, Ochs O, Horsley J, Martsinovich N, Heckl WM & Lackinger M (2017) . Faraday Discussions, 204, 331-348.
  • Della Pia A, Luo D, Blackwell R, Costantini G & Martsinovich N (2017) . Faraday Discussions, 204, 191-213.
  • Garrote Cañas AM, Martsinovich N & Sergeeva NN (2017) . ChemistrySelect, 2(8), 2433-2438.
  • Gillespie P & Martsinovich N (2017) . Journal of Physical Chemistry C, 121(8), 4158-4171.
  • Rastgoo-Lahrood A, Martsinovich N, Lischka M, Eichhorn J, Szabelski P, Nieckarz D, Strunskus T, Das K, Schmittel M, Heckl WM & Lackinger M (2016) . ACS Nano, 10(12), 10901-10911.
  • Martsinovich N (2016) . Journal of Physics: Condensed Matter, 28(7).
  • Maggio E, Martsinovich N & Troisi A (2016) . Journal of Physics: Condensed Matter, 28(7).
  • Plas J, Ivasenko O, Martsinovich N, Lackinger M & De Feyter S (2015) . Chemical Communications , 52, 68-71.
  • Thomas AG, Jackman MJ, Wagstaffe M, Radtke H, Syres K, Adell J, Lévy A & Martsinovich N (2014) . Langmuir, 30(41), 12306-12314.
  • Song W, Martsinovich N, Heckl WM & Lackinger M (2014) . CHEMICAL COMMUNICATIONS, 50(88), 13465-13468.
  • Musumeci C, Zappalà G, Martsinovich N, Orgiu E, Schuster S, Quici S, Zharnikov M, Troisi A, Licciardello A & Samorì P (2014) . Advanced Materials, 26(11), 1688-1693.
  • Musumeci C, Zappalà G, Martsinovich N, Orgiu E, Schuster S, Quici S, Zharnikov M, Troisi A, Licciardello A & Samorì P (2014) . Advanced Materials, 26(11), 1792-1792.
  • Song W, Martsinovich N, Heckl WM & Lackinger M (2014) . PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 16(26), 13239-13247.
  • Song W, Martsinovich N, Heckl WM & Lackinger M (2013) . Journal of the American Chemical Society, 135(39), 14854-14862.
  • Carvalho A, Martsinovich N, Vieira R & Troisi A (2013) . Journal of Physical Chemistry C, 117(1), 110-115.
  • Maggio E, Martsinovich N & Troisi A (2013) . Angewandte Chemie, 125(3), 1007-1009.
  • Maggio E, Martsinovich N & Troisi A (2013) . Angewandte Chemie International Edition, 52(3), 973-975.
  • Martsinovich N, Ambrosio F & Troisi A (2012) . Physical Chemistry Chemical Physics, 14(48), 16668-16676.
  • Martsinovich N & Troisi A (2012) . Physical Chemistry Chemical Physics, 14(38), 13392-13401.
  • Maggio E, Martsinovich N & Troisi A (2012) . Journal of Chemical Physics, 137(22).
  • Ambrosio F, Martsinovich N & Troisi A (2012) . Journal of Physical Chemistry Letters, 3(11), 1531-1535.
  • Maggio E, Martsinovich N & Troisi A (2012) . Journal of Physical Chemistry C, 116(14), 7638-7649.
  • Ambrosio F, Martsinovich N & Troisi A (2012) . Journal of Physical Chemistry C, 116(3), 2622-2629.
  • Eder G, Kloft S, Martsinovich N, Mahata K, Schmittel M, Heckl WM & Lackinger M (2011) . Langmuir, 27(22), 13563-13571.
  • Martsinovich N & Troisi A (2011) . Journal of Physical Chemistry C, 115(23), 11781-11792.
  • Martsinovich N & Troisi A (2011) . Energy and Environmental Science, 4(11), 4473-4495.
  • Martsinovich N, Jones DR & Troisi A (2010) . Journal of Physical Chemistry C, 114(51), 22659-22670.
  • Martsinovich N & Troisi A (2010) . Journal of Physical Chemistry C, 114(10), 4376-4388.
  • Toton D, Lorenz CD, Rompotis N, Martsinovich N & Kantorovich L (2010) . Journal of Physics Condensed Matter, 22(7).
  • Martsinovich N & Kantorovich L (2009) . Nanotechnology, 20(13), 135706.
  • Mura M, Martsinovich N & Kantorovich L (2008) . Nanotechnology, 19(46).
  • Martsinovich N & Kantorovich L (2008) . Journal of Physical Chemistry C, 112(44), 17340-17350.
  • Silly F, Shaw AQ, Castell MR, Briggs GAD, Mura M, Martsinovich N & Kantorovich L (2008) . Journal of Physical Chemistry C, 112(30), 11476-11480.
  • Martsinovich N, Kantorovich L, Fawcett RHJ, Humphry MJ & Beton PH (2008) . SMALL, 4(6), 765-769.
  • Martsinovich N & Kantorovich L (2008) . Physical Review B Condensed Matter and Materials Physics, 77(20).
  • Martsinovich N & Kantorovich L (2008) . Nanotechnology, 19(23).
  • Martsinovich N & Kantorovich L (2008) . Physical Review B Condensed Matter and Materials Physics, 77(11).
  • Martsinovich N, Hobbs C, Kantorovich L, Fawcett RHJ, Humphry MJ, Keeling DL & Beton PH (2006) . Physical Review B Condensed Matter and Materials Physics, 74(8).
  • Darwish AD, Martsinovich N, Street JM & Taylor R (2005) . CHEMISTRY-A EUROPEAN JOURNAL, 11(18), 5377-5380.
  • Troshin PA, Avent AG, Darwish AD, Martsinovich N, Abdul-Sada AK, Street JM & Taylor R (2005) . SCIENCE, 309(5732), 278-281.
  • Hitchcock PB, Avent AG, Martsinovich N, Troshin PA & Taylor R (2005) . ORGANIC LETTERS, 7(10), 1975-1978.
  • Hitchcock PB, Avent AG, Martsinovich N, Troshin PA & Taylor R (2005) . CHEMICAL COMMUNICATIONS(1), 75-77.
  • Darwish AD, Abdul-Sada AK, Martsinovich N & Taylor R (2004) Pyrolysis of fluorofullerenes. Proceedings Electrochemical Society, PV 2004-12, 139-144.
  • Martsinovich N, Rosa AL, Heggie MI & Briddon PR (2004) . DEFECTS AND DIFFUSION IN SEMICONDUCTORS - AN ANNUAL RETROSPECTIVE VII -, 230, 81-91.
  • Darwish AD, Abdul-Sada AK, Avent AG, Martsinovich N, Street JM & Taylor R (2004) . JOURNAL OF FLUORINE CHEMISTRY, 125(9), 1383-1391.
  • Darwish AD, Martsinovich N & Taylor R (2004) . ORGANIC & BIOMOLECULAR CHEMISTRY, 2(9), 1364-1367.
  • Scarle S, Ewels CP, Heggie MI & Martsinovich N (2004) . PHYSICAL REVIEW B, 69(7).
  • Diky VV, Martsinovich NV & Kabo GJ (2001) . JOURNAL OF PHYSICAL CHEMISTRY A, 105(20), 4969-4973.
  • Backes C, Behera RK, Bianco A, Casiraghi C, Doan H, Criado A, Galembeck F, Goldie S, Gravagnuolo AM, Hou H-L , Kamali AR et al () . Faraday Discussions, 227, 245-258.
  • Backes C, Bianco A, Casiraghi C, Galembeck F, Gupta RK, Hersam MC, Kamali AR, Kolíbal M, Kolosov V, Kumar V , Lee WH et al () . Faraday Discussions, 227, 141-162.
  • Backes C, Behera RK, Bellamy-Carter A, Bianco A, Caps V, Casiraghi C, Chhowalla M, Criado A, Davies T, Ferrari AC , Fornasaro S et al () . Faraday Discussions, 227, 359-382.

Book chapters

  • Yu X, Armistead SJ, McGregor J, Martsinovich N & Smith CC (2024) , Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society (pp. 3450-3454). CRC Press
  • Mulay MR & Martsinovich N (2022) In Filho WL, Azul AM, Brandli L, Salvia AL & Wall T (Ed.), Clean Water and Sanitation (pp. 593-611). Springer Cham
  • Mulay MR & Martsinovich N (2022) , The Palgrave Encyclopedia of Urban and Regional Futures (pp. 2184-2200). Springer International Publishing
  • Mulay MR & Martsinovich N (2022) , The Palgrave Encyclopedia of Urban and Regional Futures (pp. 1-17). Springer International Publishing
  • Mulay MR & Martsinovich N (2021) , Clean Water and Sanitation : Living Edition Springer, Cham
  • Trevethan T, Martsinovich N, Kantorovich L & Shluger AL (2009) , NanoScience and Technology (pp. 251-273). Springer Berlin Heidelberg
  • Martsinovich N, Hobbs C & Kantorovich L (2007) , NanoScience and Technology (pp. 601-618). Springer Berlin Heidelberg

Conference proceedings

  • Smith C, McGregor J, Martsinovich N, Armistead S, Yu X & Siripanich N (2023) (pp 293-302)
  • Martsinovich N, Ambrosio F & Troisi A (2012) Theoretical modeling of metal-organic dyes and their electron injection properties in dye-sensitized solar cells. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 243
  • Martsinovich N, Maggio E & Troisi A (2012) Theoretical modeling of electron injection and recombination rates in dye-sensitised solar cells. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 243
  • Ambrosio F, Martsinovich N & Troisi A (2012) Effect of the anchoring group on electron injection: Theoretical study of phosphonated dyes for dye-sensitized solar cells. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 243
  • Martsinovich N & Kantorovich L (2009) . PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES (pp 499-+)
  • Savini G, Heggie MI, Ewels CP, Martsinovich N, Jones R & Blumenau AT (2005) . SILICON CARBIDE AND RELATED MATERIALS 2004, Vol. 483 (pp 1057-1060)
  • Martsinovich N, Suárez-Martínez I & Heggie MI (2005) . PHYSICA STATUS SOLIDI C - CONFERENCES AND CRITICAL REVIEWS, VOL 2, NO 6, Vol. 2(6) (pp 1771-1780)
  • Martsinovich N, Rosa AL, Heggie MI, Ewels CP & Briddon PR (2003) . PHYSICA B-CONDENSED MATTER, Vol. 340 (pp 654-658)
  • Martsinovich N, Heggie MI & Ewels CP (2003) . JOURNAL OF PHYSICS-CONDENSED MATTER, Vol. 15(39) (pp S2815-S2824)
  • Heggie MI, Ewels CP, Martsinovich N, Scarle S, Jones R, Goss JP, Hourahine B & Briddon PR (2002) . JOURNAL OF PHYSICS-CONDENSED MATTER, Vol. 14(48) (pp 12689-12696)
  • Scarle S, Martsinovich N, Ewels CP & Heggie MI (2001) . PHYSICA B-CONDENSED MATTER, Vol. 308 (pp 493-496)

Other

  • Amabilino D, Bâldea I, Batteas J, Beton P, Bilbao N, Costantini G, Davidson J, De Feyter S, Diaz Fernandez Y, Ernst K-H , Hirsch B et al (2017) . Faraday Discuss., 204, 503-530.
  • Amabilino D, Bâldea I, Besenius P, Beton P, Blunt M, Buck M, Champness NR, Chi L, Clarke S, Costantini G , De Feyter S et al (2017) . Faraday Discuss., 204, 271-295.
Teaching interests

Physical Chemistry, molecular modelling, mathematics.

Teaching activities

Undergraduate and postgraduate taught modules

  • Mathematics for Chemists (Level 1)
    This course covers the basic principles of mathematics needed for a degree in Chemistry.
  • Thermodynamics, Equilibria and Electrochemistry (Level 1)
    This course introduces quantitative description of chemical and electrochemical equilibria and their energetics.
  • Molecular Modelling (Level 3)
    This course introduces the concepts of molecular mechanics and molecular dynamics calculations and their application to large molecular systems, such as organic and biomolecules and liquids.

Support Teaching:

  • Tutorials: Level 2 Physical Chemistry
  • Level 3 Literature Review

Laboratory Teaching:

  • Level 3 Physical Laboratories
  • Level 3 Research Project
  • Level 4 Research Project