Professor Derek Sinclair
PhD, BSc, MRSRC
School of Chemical, Materials and Biological Engineering
Professor in Materials Chemistry
+44 114 222 5974
Full contact details
School of Chemical, Materials and Biological Engineering
Sir Robert Hadfield Building
Mappin Street
Sheffield
S1 3JD
- Profile
-
Derek was appointed to the academic staff at the University of Sheffield in 1999 as a Lecturer in Functional Materials, following from Lecturer appointments in the Department of Chemistry, University of Aberdeen (1994-99) and the Department of Materials Science, University of Leeds (1993-94).
He obtained his BSc (1st Class Honours) and PhD (supervised by Professor Tony West) in Chemistry at the University of Aberdeen and held post-doctoral research appointments at the University of Aberdeen (with Profs Tony West and John Irvine) and the Interdisciplinary Research Centre for Superconductivity at the University of Cambridge (with Prof Paul Attfield), before joining the academic staff at Leeds in 1993.
Derek is recognised for his ability to probe the structure (crystal and defect)-composition-microstructure-property relationships of a wide range of functional oxides, spanning from superconductors to dielectrics via mixed conductors and solid electrolytes.
- Research interests
-
Our research is involved with the synthesis and characterisation of oxide-based functional ceramics. The properties and applications of many functional ceramics depend on the close control of the crystal structure, composition, ceramic microstructure, dopants and dopant (or defect) distribution. Materials of well-defined composition are synthesised and characterised by a variety of diffraction, spectroscopic, microscopic, analytical and thermal techniques. The electrical properties are usually characterised by ac impedance spectroscopy, in preference to dc or conventional fixed-frequency measurements. This multi-technique approach is backed up with atomistic modelling (defect chemistry) and finite element modelling (electrical microstructure) to rationalise the composition-structure-property relationships in important functional ceramics which include dielectrics, solid electrolytes, mixed conductors and thermoelectrics.
In addition to systematic doping studies on established materials, we undertake explorative phase diagram studies and speculative synthetic work on `new織 materials with potentially useful electrical properties. This approach is being used to discover new mixed ionic/electronic conductors, proton conductors, oxide-ion conductors, piezo-, pyro- and ferro-electrics, (high permittivity) microwave dielectrics and thermoelectrics. Several of these projects are in collaboration with other MS&E staff members, including Tony West, Ian Reaney, John Harding, Colin Freeman and Julian Dean. We also collaborate with Rachael Elder and Ray Allen from Chemical & Biological Engineering on solid oxide electrolysis cells as part of an EPSRC Programme Grant on Carbon Capture and Utilisation (4CU).
Impedance spectroscopy is a powerful technique which is being developed to probe electrical inhomogeneities in ceramics, and in particular to study electrode/sample interfaces, surface layers, electro-active grain boundaries, core-shell phenomena within electrically heterogeneous grains, ferroelectricity and ionic conduction. Much of this work has been assisted by advanced data handling techniques, such as combined impedance and modulus spectroscopy, which has been developed in collaboration with Tony West. Recently we have developed a finite element code to simulate impedance spectroscopy data (with Julian Dean and John Harding) for three-dimensional ceramic microstructures which allows comprehensive treatment of a full three-dimensional granular representation of ceramic microstructure without the requirement for equivalent circuits based on the Brickwork layer model or the introduction of constant phase elements to describe any nonideality of the impedance response. A variety of electro-materials, commercial devices and porous materials have been characterised successfully including; solid state lithium batteries, positive temperature coefficient of resistance (ptcr)-BaTiO3 ceramics, single crystals of ferroelectric LiTaO3, numerous solid electrolytes, Bi4V2O11, La9.33(SiO4)6O2 and (Na,Bi)(Ti, Mg)O3, ferro-electric and Pb-free relaxors, BaTiO3-based Multi-Layer Capacitors (with AVX Ltd, Coleraine), Internal Barrier Layer Capacitors (CaCu3Ti4O12) and pore reduced cement.
Key projects:
- Ferroelectric BaTiO3-based ceramics for multilayer capacitors.
- High permittivity oxides for telecommunication applications, eg microwave dielectrics.
- Non-ohmic devices, eg ptcr-thermistors and Barrier Layer Capacitors.
- Low Temperature Co-fired Ceramics (LTCC).
- Pb-free piezoelectrics and recoverable electro-strain materials for actuators.
- Solid electrolytes and mixed conductors for sensors and solid oxide fuel/electrolysis cells.
- Thermoelectric oxides for thermoelectric generators.
- Development of Impedance Spectroscopy to characterise electroceramics.
- Publications
-
Journal articles
- . Journal of Science: Advanced Materials and Devices, 10(3), 100971-100971.
- . Journal of Materiomics, 11(4), 101030-101030.
- . Journal of Materiomics, 11(3).
- . Solid State Ionics, 414.
- . Journal of the European Ceramic Society, 44(16).
- . Journal of Materials Chemistry C, 12(33), 12992-13001.
- . International Journal of Applied Ceramic Technology, 21(6), 4318-4330.
- . Advanced Energy Materials, 14(31).
- . Journal of the European Ceramic Society, 44(12), 6960-6966.
- . Journal of Materials Science & Technology, 196, 148-161.
- . Journal of the European Ceramic Society, 44(5), 2989-2997.
- . Journal of The Electrochemical Society, 170(11).
- . Physical Review Materials, 7(11).
- . Journal of Materials Chemistry A, 11(30), 16159-16171.
- . Energy Conversion and Management: X, 19.
- . ACS Applied Materials & Interfaces, 15(16), 20228-20239.
- . Applied Physics Letters, 122.
- . Solid State Ionics, 393.
- . Physical Review Letters, 130(7).
- . Journal of the European Ceramic Society, 43(2), 362-369.
- . Acta Crystallographica Section A Foundations and Advances, 79(2), 163-170.
- . Acta Materialia, 246.
- . Crystals, 12(12).
- . Crystals, 12(11).
- . Advanced Engineering Materials, 24(12).
- . Journal of the European Ceramic Society, 42(15), 7381-7387.
- . Open Ceramics, 9.
- . Journal of Materials Chemistry A, 10(2), 891-901.
- . Acta Materialia, 216.
- . Physical Chemistry Chemical Physics, 23(19), 11327-11333.
- . Acta Materialia, 208.
- . Journal of the European Ceramic Society, 41(4), 2587-2595.
- . Acta Materialia, 207.
- . Journal of the European Ceramic Society, 41(7), 4189-4198.
- . Journal of the European Ceramic Society, 41(2), 1221-1229.
- . Journal of Materials Chemistry A, 8(47), 25120-25130.
- . Journal of the American Ceramic Society, 103(12), 6801-6810.
- . Physical Chemistry Chemical Physics, 22(36), 20941-20950.
- . Physical Review Materials, 4(9).
- . Energy & Environmental Science, 13(9), 2938-2948.
- . Advanced Functional Materials, 30(30).
- . Journal of Materials Chemistry A, 8(22), 11414-11423.
- . Electronics Letters, 56(7), 347-350.
- . Advanced Functional Materials, 30(6).
- . Journal of the American Ceramic Society, 103(4), 2702-2714.
- . Journal of the European Ceramic Society, 39(16), 5213-5235.
- . Journal of Materials Chemistry A, 7(37), 21254-21263.
- . Advanced Functional Materials, 29(38).
- . Journal of Applied Physics, 125(21).
- . Journal of the American Ceramic Society, 102(6), 3609-3622.
- . Acta Materialia, 166, 202-207.
- . Applied Energy, 235, 1300-1313.
- . Energy & Environmental Science, 12(2), 582-588.
- . Journal of the European Ceramic Society, 39(4), 1170-1177.
- . Journal of the American Ceramic Society, 101(12), 5428-5442.
- . Journal of the European Ceramic Society, 38(15), 4922-4938.
- . Journal of Materials Chemistry A, 6(46), 23578-23586.
- . Journal of Materials Chemistry C, 6(43), 11598-11607.
- . Journal of Materials Chemistry C, 6(34), 9258-9268.
- . Journal of the European Ceramic Society, 38(9), 3118-3126.
- . Journal of the European Ceramic Society, 38(12), 4220-4231.
- . Applied Physics Letters, 112(18).
- . Journal of the American Ceramic Society, 101(3), 1211-1220.
- . Journal of Materials Chemistry A, 5(41), 21658-21662.
- . Journal of the European Ceramic Society, 37(13), 3981-3993.
- . Journal of Materials Chemistry C, 5(25), 6300-6310.
- . Journal of the European Ceramic Society, 37(8), 2795-2801.
- . Journal of Materials Chemistry C, 5(29), 7243-7252.
- . ACS Omega, 2(5), 2126-2133.
- . MRS Communications, 1-7.
- . Chemistry of Materials, 29(1), 265-280.
- . Solid State Ionics, 299, 38-45.
- . Inorganic Chemistry, 56(1), 542-547.
- . Applied Physics Letters, 109(14).
- . ChemInform, 47(42).
- . Applied Physics Letters, 109(8).
- . Chemistry of Materials, 28(15), 5269-5273.
- . J. Mater. Chem. C, 4, 5779-5786.
- . ECS Meeting Abstracts, MA2016-01(28), 1400-1400.
- . CHEMISTRY OF MATERIALS, 28(3), 925-935.
- . Journal of Applied Physics, 119(5).
- . Journal of Materials Chemistry A, 4, 6896-6901.
- . Journal of the American Ceramic Society, 99(2), 515-522.
- . Surface Engineering, 31(8), 588-597.
- . ECS Meeting Abstracts, MA2015-03(1), 316-316.
- . ECS Meeting Abstracts, MA2015-03(1), 246-246.
- . Journal of the American Ceramic Society, 98(6), 1925-1931.
- . Dalton Transactions, 44(16), 7643-7653.
- . Applied Physics Letters, 106(10).
- . Chemistry of Materials, 27(2), 629-634.
- . Journal of the European Ceramic Society, 35(9), 2479-2488.
- . Chemistry of Materials, 26(21), 6104-6112.
- . ECS Meeting Abstracts, MA2014-02(23), 1342-1342.
- . Journal of the American Ceramic Society.
- . Journal of the American Ceramic Society, 97(3), 885-891.
- . Journal of the American Ceramic Society.
- . Nat Mater, 13(1), 31-35.
- . Journal of Materials Chemistry C, 1(48), 8222-8222.
- . ECS Meeting Abstracts, MA2013-02(10), 753-753.
- . Journal of Applied Physics, 114(3).
- . Rsc Advances, 3(34), 14580-14589.
- . Rsc Advances, 3(19), 7030-7036.
- . Journal of Solid State Chemistry, 200, 310-316.
- . ChemInform, 44(11).
- . Advanced Functional Materials, 23(31), 3925-3928.
- . Chemistry of Materials, 25(4), 548-554.
- CACU3TI4O12 (CCTO) ceramics for capacitor applications, 1-44.
- . Journal of Applied Physics, 113(4).
- The application of a new potential model to the rare-earth doping of SrTiO3 and CaTiO3 (vol 1, pg 1574, 2013). JOURNAL OF MATERIALS CHEMISTRY C, 1(48), 8222-8222.
- . Chemistry of Materials, 25(1), 48-54.
- . JOURNAL OF MATERIALS CHEMISTRY C, 1(8), 1574-1582.
- . Advanced Functional Materials, 23(4), 491-495.
- . International Journal of Hydrogen Energy.
- . ChemInform, 43(41).
- . Journal of the European Ceramic Society, 32(12), 3313-3323.
- Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu 3Ti 4O 12 (CCTO) ceramics. Journal of the European Ceramic Society.
- . Journal of Materials Chemistry, 22(30), 15092-15103.
- . Chemistry of Materials, 24(12), 2247-2249.
- . JOURNAL OF APPLIED PHYSICS, 111(9).
- . Journal of Applied Physics, 111(5).
- . Applied Physics Letters, 100(18).
- . Journal of Applied Physics, 111(6).
- . Nature Materials, 10(12), 899-901.
- . Advanced Functional Materials, 21(19), 3737-3743.
- . J APPL PHYS, 109(11).
- . J MATER CHEM, 21(17), 6292-6299.
- . J APPL PHYS, 109(8).
- . J APPL PHYS, 109(8).
- . J MATER CHEM, 21(13), 4861-4868.
- . APPL PHYS LETT, 98(9).
- . CHEM MATER, 23(4), 1050-1060.
- . NANOSCALE, 3(3), 1171-1175.
- High temperature oxygen separation for the sulphur family of thermochemical cycles - part I: Membrane selection and flux testing. International Journal of Hydrogen Energy.
- Synthesis, structure and electrical properties of Cu3.21Ti1.16Nb2.63O12 and the CuO x -TiO2-Nb2O5 pseudoternary phase diagram. Journal of Solid State Chemistry.
- . Functional Materials Letters, 3(1), 65-68.
- . J MATER RES, 25(6), 1011-1014.
- . J AM CERAM SOC, 93(12), 4087-4095.
- . J AM CERAM SOC, 93(12), 4174-4181.
- . APPL PHYS LETT, 97(6).
- . J APPL PHYS, 108(1).
- . CHEM MATER, 22(14), 4320-4327.
- . PHYS REV B, 81(22).
- . J ELECTROCERAM, 25(2-4), 130-134.
- High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3-BiFeO3-BiScO3-PbTiO3 system. Journal of Electroceramics, 1-5.
- . CHEM MATER, 22(1), 6-8.
- . J APPL PHYS, 106(11).
- . J APPL PHYS, 106(10).
- . Materials Science and Technology, 25(11), 1301-1301.
- . J APPL PHYS, 106(8).
- . CHEM MATER, 21(21), 5272-5283.
- . APPL PHYS LETT, 95(14).
- . J MATER CHEM, 19(33), 5916-5919.
- . J MATER CHEM, 19(29), 5201-5206.
- . Ceramic Transactions, 204, 145-153.
- . J APPL PHYS, 105(11).
- . APPL PHYS LETT, 94(21).
- . APPL PHYS LETT, 94(19).
- . CHEM MATER, 21(10), 2085-2093.
- . CHEM MATER, 21(8), 1731-1742.
- . J MATER CHEM, 19(3), 356-359.
- Potential for using high temperature membranes in the sulphur trioxide decomposition stage of a thermochemical cycle. Aiche Annual Meeting Conference Proceedings.
- . J AM CERAM SOC, 91(9), 3101-3104.
- . APPL PHYS LETT, 92(18).
- . J AM CERAM SOC, 91(4), 1338-1341.
- . CHEM MATER, 20(8), 2818-2828.
- . J AM CERAM SOC, 91(3), 893-901.
- . ChemInform, 39(8).
- Potential for using high temperature membranes in the sulphur trioxide decomposition stage of a thermochemical cycle. AIChE 100 - 2008 AIChE Annual Meeting, Conference Proceedings.
- Nanoscale imaging of CaCu3Ti4O12 dielectric properties: The role of surface defects. Solid State Phenomena, 131-133, 443-448.
- . J AM CERAM SOC, 91(1), 144-150.
- . Angewandte Chemie, 119(46), 8941-8945.
- . Angew Chem Int Ed Engl, 46(46), 8785-8789.
- . J ELECTROCERAM, 19(2-3), 221-228.
- . APPL PHYS LETT, 91(13).
- . Proceedings of the 2nd IEEE International Conference on Nano Micro Engineered and Molecular Systems IEEE NEMS 2007, 947-950.
- . APPL PHYS LETT, 91(6).
- . CHEM MATER, 19(14), 3425-3432.
- . J AM CERAM SOC, 90(5), 1475-1482.
- . APPL PHYS LETT, 90(14).
- . Journal of Materials Science, 42(7), 2492-2498.
- . J APPL PHYS, 101(6).
- . J ELECTROCERAM, 18(1-2), 77-85.
- . J EUR CERAM SOC, 27(7), 2577-2589.
- . J MATER RES, 21(9), 2429-2429.
- . APPL PHYS LETT, 89(21).
- . J AM CHEM SOC, 128(48), 15386-15387.
- . J AM CERAM SOC, 89(10), 3129-3135.
- . J AM CERAM SOC, 89(9), 2833-2838.
- . ECS Meeting Abstracts, MA2006-02(29), 1342-1342.
- . APPL PHYS LETT, 88(23).
- . J AM CERAM SOC, 89(7), 2105-2113.
- . PHYS REV B, 73(9).
- . Micron, 37(5), 412-419.
- . J MATER CHEM, 16(30), 3114-3119.
- . J AM CERAM SOC, 89(1), 332-335.
- . J AM CERAM SOC, 89(1), 336-339.
- . J MATER RES, 20(9), 2391-2399.
- . J MATER RES, 20(5), 1316-1323.
- . APPL PHYS LETT, 87(24).
- . J APPL PHYS, 98(9).
- . J APPL PHYS, 98(8).
- . J AM CERAM SOC, 88(11), 3055-3062.
- . SOLID STATE IONICS, 176(23-24), 1941-1947.
- . SOLID STATE IONICS, 176(3-4), 393-400.
- BaTiO3-Based ceramics for tunable microwave applications. J AM CERAM SOC, 87(6), 1082-1087.
- Insulating properties of lanthanum-doped BaTiO3 ceramics prepared by low-temperature synthesis. J AM CERAM SOC, 87(11), 2132-2134.
- . Materials Research Bulletin, 39(14-15), 2229-2240.
- . SOLID STATE IONICS, 171(3-4), 237-242.
- . ChemInform, 35(30).
- Synthesis, crystal structure, and characterization of Ba(Ti1/2Mn1/2)O-3: A high permittivity 12R-type hexagonal perovskite. CHEM MATER, 16(10), 2007-2015.
- Microwave dielectric properties of gallium-doped hexagonal barium titanate ceramics. J AM CERAM SOC, 86(3), 511-513.
- . J EUR CERAM SOC, 23(11), 1911-1917.
- . ChemInform, 34(27).
- A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: Doped lanthanum gallate. J ELECTROCERAM, 10(3), 165-177.
- . APPL PHYS LETT, 82(25), 4537-4539.
- . ChemInform, 33(51), 17-17.
- Giant barrier layer capacitance effects in CaCU3Ti4O12 ceramics. ADV MATER, 14(18), 1321-+.
- The influence of grain boundary impedances on the p-type conductivity of undoped BaTiO3 ceramics. J EUR CERAM SOC, 22(4), 579-583.
- . APPL PHYS LETT, 80(12), 2153-2155.
- Alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3. J AM CERAM SOC, 84(2), 474-476.
- Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy. J AM CERAM SOC, 84(3), 531-538.
- Electrode-contact spreading resistance phenomena in doped-lanthanum gallate ceramics. J ELECTROCERAM, 7(3), 179-188.
- A novel enhancement of ionic conductivity in the cation-deficient apatite La-9.33(SiO4)(6)O-2. J MATER CHEM, 11(8), 1978-1979.
- Charge compensation mechanisms in La-doped BaTiO3. J ELECTROCERAM, 6(3), 219-232.
- Spark-plasma-sintering of fine BaTiO3 powder prepared by a sol-crystal method. J MATER SCI, 36(9), 2329-2334.
- AC impedance spectroscopy of pore reduced cements: Influence of contact resistance. J MATER SCI, 35(19), 4823-4826.
- An in situ time-resolved neutron diffraction study of the hydrothermal crystallisation of barium titanate. CHEM COMMUN(14), 1267-1268.
- Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J APPL PHYS, 86(11), 6355-6366.
- The influence of A-cation disorder on the Curie temperature of ferroelectric ATiO(3) perovskites. CHEM COMMUN(16), 1497-1498.
- . Solid State Ionics, 120(1-4), 33-41.
- . Solid State Ionics, 118(3-4), 229-239.
- . Journal of Materials Science, 34(5), 917-924.
- . Journal of the European Ceramic Society, 19(8), 1665-1673.
- . Journal of Materials Chemistry, 9(1), 83-91.
- The crystal structure of a new oxide ion conductor NaBi3V2O10 and oxide ion conductivity in Pb2Bi2V2O10. J MATER CHEM, 9(10), 2617-2621.
- Structure and electrical properties of oxygen-deficient hexagonal BaTiO3. J MATER CHEM, 9(6), 1327-1331.
- . Journal of the American Ceramic Society, 81(7), 1957-1960.
- . Journal of Materials Science Letters, 17(3), 203-205.
- . Advances in Cement Research, 10(4), 151-159.
- . Journal of Materials Chemistry, 8(2), 281-282.
- . Journal of the American Ceramic Society, 80(11), 2876-2884.
- . Journal of Materials Science Letters, 16(6), 422-425.
- . Journal of Materials Chemistry, 7(10), 2091-2095.
- . Journal of Electroceramics, 1(1), 65-71.
- . Ferroelectrics Letters Section, 21(5-6), 127-134.
- Luminescence Spectra of the Na1-xTa1-xEu2xO3 Solid Solution. Ferroelectric Letters, 21, 127-134.
- . Materials Research Bulletin, 31(12), 1543-1549.
- Electrical characterization of pore reduced cement by impedance spectroscopy. Journal of Materials Science Letters, 15(18), 1566-1568.
- . Materials Research Bulletin, 31(2), 171-176.
- . Journal of the American Ceramic Society, 78(1), 241-244.
- . Journal of Materials Science, 30(11), 2743-2746.
- Characterisation of Electro-materials using ac Impedance Spectroscopy. Boletin de la Sociedad Espanola of Ceramica y Vidrio, 34, 55-65.
- . ChemInform, 25(29).
- . Journal of Materials Science, 29(23), 6061-6068.
- . Journal of the Chemical Society, Chemical Communications(12), 1421-1421.
- . Physica C: Superconductivity, 225(3-4), 307-316.
- . Journal of Superconductivity, 7(2), 271-277.
- . Physica C: Superconductivity, 221(3-4), 304-310.
- . Physica C: Superconductivity, 235-240, 1531-1532.
- . Physica C: Superconductivity, 235-240, 2711-2712.
- . Physica C: Superconductivity, 235-240, 967-968.
- . Physica C: Superconductivity, 235-240, 1927-1928.
- . Physica C: Superconductivity, 235-240, 233-236.
- . Physica C: Superconductivity, 235-240, 965-966.
- . Physica C: Superconductivity, 205(3-4), 323-328.
- . Solid State Ionics, 62(3-4), 193-198.
- . Solid State Ionics, 66(1-2), 151-158.
- . Journal of Materials Research, 7(1), 43-47.
- CHARACTERIZATION OF PTCR BARIUM-TITANATE BY IMPEDANCE SPECTROSCOPY. SPECIAL CERAMICS 9, 49, 223-227.
- . Journal of Materials Chemistry, 2(5), 579-579.
- . ChemInform, 21(26).
- . Advanced Materials, 2(3), 132-138.
- . Japanese Journal of Applied Physics, 29(11A), L2002-L2002.
- . Solid State Ionics, 37(4), 295-298.
- . Journal of Applied Physics, 66(8), 3850-3856.
- , 535-543.
- . Journal of Materials Science Letters, 7(8), 823-824.
- . Journal of Power Sources, 24(2), 157-164.
- . Journal of Materials Chemistry A, 6(13), 5241-5242.
- . Journal of Materials Chemistry A, 13(6), 5243-5254.
- . RSC Adv., 4(61), 32549-32554.
- . Physical Review B, 53(10), 6752-6758.
- . Physical Review B, 53(9), 5848-5855.
- . Physical Review B, 51(18), 12747-12753.
- . Physical Review B, 50(17), 13073-13076.
- . Physical Review B, 49(18), 13243-13246.
- . J. Mater. Chem., 4(3), 445-447.
- . Physical Review Letters, 71(8), 1238-1241.
- . J. Mater. Chem., 1(1), 147-148.
- . Physical Review B, 39(18), 13486-13492.
Book chapters
- CaCu3Ti4O12 (CCTO) Ceramics for Capacitor Applications, Capacitors Theory of Operation, Behavior and Safety Regulations (pp. 1-44). Nova Science Pub Incorporated
Conference proceedings
- . IMAPSource Proceedings 2022 (HiTEN), Vol. 2022(HiTEN) (pp 125-130). Oxford, 18 July 2022 - 18 July 2022.
- . 11th International Conference on Power Electronics, Machines and Drives (PEMD 2022) (pp 41-46). Newcastle, UK (hybrid conference), 21 June 2022 - 21 June 2022.
- Comparison of BSPT and PZT piezoelectric ceramic transformers for high temperature power supplies. International Conference and Exhibition on High Temperature Electronics Network (HiTEN 2022). Oxford, 18 July 2022 - 18 July 2022.
- . Materials Today: Proceedings, Vol. 4(12) (pp 12360-12367). Strasbourg, France, 22 May 2017 - 22 May 2017.
- . ECS Transactions, Vol. 68(1) (pp 3417-3427)
- . ECS Transactions, Vol. 68(1) (pp 2083-2092)
- . ELECTROCHEMICAL SYNTHESIS OF FUELS 2, Vol. 58(2) (pp 207-216)
- . 3RD INTERNATIONAL CONGRESS ON CERAMICS (ICC3): ADVANCES IN ELECTRO CERAMICS, Vol. 18
- . IOP Conference Series: Materials Science and Engineering, Vol. 8 (pp 012018-012018)
- . IOP Conference Series: Materials Science and Engineering, Vol. 8 (pp 012038-012038)
- . IOP Conference Series: Materials Science and Engineering, Vol. 8 (pp 012037-012037)
- Improving Sulphur Dioxide Yield in the Sulphuric Acid Thermal Decomposition Process through the Application of High Temperature Ceramic Membrane Separations. 18th World Hydrogen Energy Conference 2010 Whec 2010 Proceedings, Vol. 2 (pp 259-265)
- Potential for using high temperature membranes in the sulphur trioxide decomposition stage of a thermochemical cycle. AIChE 100 - 2008 AIChE Annual Meeting, Conference Proceedings
- Electrical conductivity of hexagonal Ba(Ti0.90Mn0.10)O3 ceramics. 2007 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3 (pp 707-+)
- Microstructural and electrical characterisation of LaxBa1-xTi1-xYxO3 (0 <= x <= 0.50) ceramics. SCIENCE OF ENGINEERING CERAMICS III, Vol. 317-318 (pp 873-876)
- . CURRENT APPLIED PHYSICS, Vol. 6(3) (pp 474-477)
- . JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol. 26(10-11) (pp 1947-1951)
- . EMAG-NANO 2005: Imaging, Analysis and Fabrication on the Nanoscale, Vol. 26 (pp 65-68)
- Electrical properties of 6H-BaTi0.95M0.0O3-delta ceramics where M = Mn, Fe, Co and Ni. JOURNAL OF ELECTROCERAMICS, Vol. 13(1-3) (pp 305-309)
- . JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol. 24(6) (pp 1721-1724)
- . JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol. 24(6) (pp 1439-1448)
- . Solid State Ionics (pp 553-560)
- . Solid State Ionics (pp 561-568)
- Electrical characterisation of oxide ion conducting Perovskites and apatites. SOLID STATE IONICS: TRENDS IN THE NEW MILLENNIUM, PROCEEDINGS (pp 487-499)
- . CRYSTAL ENGINEERING, Vol. 5(3-4) (pp 439-448)
- Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, Vol. 3(8) (pp 1205-1210)
- . Journal of the American Ceramic Society, Vol. 79(6) (pp 1633-1641)
- . Solid State Phenomena, Vol. 131-133 (pp 443-448)
Other
- . ChemInform, 42(42).
Preprints
- , arXiv.
- Professional activities and memberships
-
- Member of the EPSRC Peer Review College (Functional Materials).
- Member of the IOM3 Materials Chemistry Committee.
- Editorial Board Member for the Journal of Asian Ceramic Societies.