Professor Neil Hunter FRS
School of Biosciences
Krebs Professor of Biochemistry
- Profile
-
- 2008 - present: Krebs Chair in Biochemistry, School of Biosciences, University of Sheffield
- 1993 - 2008: Professor, MBB, University of Sheffield
- 1990 - 1993: Reader, MBB, University of Sheffield
- 1988 - 1990: Senior Lecturer, Dept of Mol. Biology and Biotechnology (MBB), University of Sheffield
- 1984 - 1988: Lecturer, Department of Pure and Applied Biology, Imperial College, London.
- 1983 - 1984: Postdoctoral Research Assistant, Department of Microbiology, Bristol University.
- 1981 - 1982: SERC Postdoctoral Fellow, Department of Biochemistry, Bristol University.
- 1979 - 1980: Research Assistant Professor, Dept. of Biochemistry, Rutgers University, N.J., USA.
- 1978 - 1979: Busch Postdoctoral Fellow, Dept of Microbiology, Rutgers University, N.J., U.S.A.
- Research interests
-
Overview
Photosynthesis powers life on Earth; it supplies the oxygen we breathe, and it converts waste carbon dioxide into food and fuel. However, sunlight is a diffuse energy source so an extensive light-harvesting (LH) antenna, consisting of thousands of pigment molecules, is required to absorb this energy and funnel it to specialised chlorophyll protein complexes called reaction centres. Here, the absorbed energy initiates a series of electron transfer reactions that capture some of the solar energy, prior to its storage in a chemical form that powers cellular metabolism.
We exploit the relative simplicity of photosynthetic bacteria to study the biosynthesis of chlorophyll pigments, and we also investigate the assembly, structure membrane organisation and nanotechnology of photosynthetic pigment-protein complexes.
We use a variety of approaches - molecular genetics, protein engineering, atomic force microscopy as well as structural and spectroscopic methods - for our studies of the biogenesis, structure and function of photosynthetic membranes. In addition, we are fortunate to have collaborations with many scientists in the UK, Europe, USA and China.
Chlorophyll biosynthesis in bacteria and plants
Billions of tonnes of chlorophyll are made every year, on land and in the oceans, colouring the Earth and providing plants, algae and photosynthetic bacteria with the nanoscopic solar panels that absorb sunlight. Over decades of research we have identified and cloned the genes for the enzymes of chlorophyll biosynthesis, and we have overexpressed them in E. coli, so we can purify each enzyme and find out how it works. We have put the complete set of chlorophyll biosynthesis genes into E. coli, which turns the cells green, so now we know we can assemble all the chlorophyll biosynthesis enzymes in a foreign cell, and that they work together to make chlorophyll. This metabolic engineering not only addresses important biological problems such as the concept of the minimal amount of genetic information required for photosynthetic life but also lays the groundwork for engineering cell factories with light-powered metabolism.
Protein engineering, biochemical and structural studies of light-harvesting and reaction centre complexes
We developed a versatile system for the mutagenesis and expression of genetically altered photosynthetic complexes, which allows us to examine protein-protein and pigment-protein interactions, such as those that establish hydrogen-bonding networks that tune the light-absorbing and energy transferring properties of bacterial light-harvesting (LH) complexes.
We purify photosynthetic complexes from photosynthetic bacteria and plants, and with our collaborators we use cryo-electron microscopy to determine the structures of these complexes to find out how they work.
Assembly and organisation of photosynthetic membranes
Chlorophyll protein complexes are embedded in lamellar, tubular or spherical membranes, which increase the surface area for harvesting, trapping and storing solar energy. It is important to find out how photosynthetic complexes are organised in membranes, so we use atomic force microscopy to image the nanoscale spatial organisation of the photosynthetic apparatus in bacteria and plants.
Bionanotechnology of light harvesting complexes
Atomic-level structural models of whole membrane assemblies have been constructed by collaborators Klaus Schulten and Melih Sener at the Beckman Institute, Illinois, USA, using a combination of crystallographic, AFM and electron microscopy data allied to petascale computational modelling.
Such models, now at the 100 million atom scale, are starting to address the collective behaviour of whole membrane assemblies, to make predictions of the energy transfer and trapping behaviour of large-scale arrays, and to identify desirable design motifs for artificial photosynthetic systems.
New surface chemistries and nanopatterning methods are being developed in collaboration with Professor Graham Leggett (Sheffield) to facilitate the construction of innovative architectures for coupled energy transfer and trapping. Nanometre-scale patterns of photosynthetic complexes have been fabricated on self-assembled monolayers deposited on either gold or glass using several lithographic methods.
Such artificial light-harvesting arrays will advance our understanding of natural energy-converting systems, and could guide the design and production of proof-of-principle devices for biomimetic systems to capture, convert and store solar energy.
- Publications
-
Journal articles
- . Biochemical Journal.
- . Plant Physiology, 198(2).
- . ACS Nano, 19(15), 14865-14872.
- . The Journal of Physical Chemistry B, 129(12), 3191-3197.
- . FEBS Letters, 599(10), 1407-1419.
- . The Plant Cell, 37(3).
- . ACS Applied Energy Materials, 8(4), 2219-2228.
- . Journal of the American Chemical Society, 146(29), 20019-20032.
- . Biochemical Journal, 481(13), 823-838.
- . Nature Chemical Biology, 20(7), 906-915.
- . Science, 384(6693).
- . ACS Photonics, 11(3), 1318-1326.
- . Bioscience Reports, 44(2).
- . ACS Synthetic Biology, 12(8), 2236-2244.
- . The Journal of Physical Chemistry Letters, 14(26), 6135-6142.
- . Bioscience Reports, 43(5).
- . Journal of the American Chemical Society, 145(21), 11659-11668.
- . The Plant Journal, 114(6).
- . Biochemical Journal, 480(6), 455-460.
- . Proceedings of the National Academy of Sciences, 120(12).
- . Plant Communications, 4(1).
- . Photosynthesis Research, 155(3), 219-245.
- . The Journal of Physical Chemistry B, 126(49), 10335-10346.
- . BioDesign Research, 2022, 1-16.
- . ACS Synthetic Biology, 11(11), 3805-3816.
- . Proceedings of the National Academy of Sciences, 119(43).
- . Journal of Photochemistry and Photobiology B: Biology, 237, 112585-112585.
- . Microorganisms, 10(9).
- . Biochemical Journal, 479(13), 1487-1503.
- . Science Advances, 8(7).
- . Science Advances, 8(6).
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1863(2).
- . The Plant Journal, 109(1), 23-34.
- . Biochemical Journal, 478(21), 3923-3937.
- . Biochemistry, 60(44), 3302-3314.
- . Biochemical Journal, 478(20), 3775-3790.
- . Plant Direct, 5(10).
- . Biochemical Journal, 478(17), 3253-3263.
- . Parallel Computing, 102.
- . Advanced Materials Interfaces, 8(5).
- . Proceedings of the National Academy of Sciences, 118(10).
- . Nature Plants, 7(3), 365-375.
- . Science Advances, 7(7).
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1862(5).
- . Science Advances, 7(3).
- . The Plant Journal, 105(1), 223-244.
- . Nature Plants, 6(12), 1491-1502.
- . Biochemical Journal, 477(20), 4021-4036.
- . Journal of the American Chemical Society, 142(32), 13898-13907.
- . Lab on a Chip, 20(14), 2529-2538.
- . Biochemical Journal, 477(12), 2313-2325.
- . Journal of Biological Chemistry, 295(20), 6888-6925.
- . Photosynthesis Research, 144(2), 155-169.
- . Proceedings of the National Academy of Sciences, 117(12), 6502-6508.
- . Proceedings of the National Academy of Sciences, 117(12), 6752-6761.
- . Microbial Biotechnology, 13(2), 363-367.
- . Applied and Environmental Microbiology, 86(1).
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861(4), 148064-148064.
- . Nature, 575(7783), 535-539.
- . Cell, 179(5), 1098-1111.e23.
- . The Plant Cell, 31(12), 2912-2928.
- . Biochemical Journal, 476(15), 2173-2190.
- . Nature Plants, 5(8), 879-889.
- . Scientific Reports, 9(1).
- . Plant Physiology, 180(4), 2152-2166.
- . Biochemical Journal, 476(13), 1875-1887.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1860(7), 591-599.
- . Faraday Discussions, 216, 57-71.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1860(3), 209-223.
- . The Journal of Physical Chemistry B, 123(9), 2087-2093.
- . The Journal of Physical Chemistry Letters, 10(2), 270-277.
- . Elsevier Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1859(10), 1075-1085.
- . Journal of Biological Chemistry, 293(39), 15233-15242.
- . FEBS Letters, 592(18), 3062-3073.
- . Nanoscale, 10(27), 13064-13073.
- . Nature Plants, 4(391).
- . Journal of Biological Chemistry, 293(18), 6672-6681.
- . Nature, 556(7700), 203-208.
- . BBA - Bioenergetics, 1859(3), 215-225.
- . Photosynthesis Research, 135(1-3), 33-43.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1859(7), 501-509.
- . Nature Plants, 4, 116-127.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1859(2), 119-128.
- . Science Advances, 4(1).
- . Chemical Science, 9, 2238-2251.
- . Scientific Reports, 7(1).
- . Nature Communications, 8.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1858(11), 927-938.
- . Molecular Microbiology, 106(6), 961-975.
- . The Journal of Chemical Physics, 147(13).
- . Langmuir.
- . The Journal of Physical Chemistry B, 121(32), 7571-7585.
- . Scientific Reports, 7(1).
- . The Journal of Physical Chemistry B, 121(28), 6979-6979.
- . The Plant Cell, 29(7), 1794-1794.
- . Proceedings of the National Academy of Sciences, 114(24), 6280-6285.
- . Biochim Biophys Acta.
- . Plant Cell, 29(5), 1119-1136.
- . Journal of Physical Chemistry B, 121(15), 3787-3797.
- . Chemical Science, 8, 4517-4526.
- . Langmuir, 33(15), 3672-3679.
- . Chem. Commun., 53(30), 4250-4253.
- . Scientific Reports , 7.
- . FEBS Letters, 591, 573-580.
- . Nature Communications, 8.
- . Biochemical Journal, 474(5), 667-681.
- . Microbial Biotechnology, 10(1), 125-137.
- . ACS Nano.
- . Photosynthesis Research.
- . The Journal of Physical Chemistry B, 120(43), 11123-11131.
- . ACS Synthetic Biology, 5(9), 948-954.
- . eLife, 5.
- . FEBS Letters, 590(12), 1687-1693.
- . The Journal of Physical Chemistry B.
- . Journal of Physical Chemistry A, 120(24), 4124-4130.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1857(6), 634-642.
- . Journal of the American Chemical Society, 138(20), 6591-6597.
- . Journal of Bacteriology.
- . JOURNAL OF BACTERIOLOGY, 198(9), 1393-1400.
- . Frontiers in Plant Science, 7.
- . Langmuir.
- . Photosynthesis Research, 127(1), 117-130.
- . Parallel Computing, 55, 17-27.
- . Nature Plants, 1.
- . Biochemistry , 54(44), 6659-6662.
- . Journal of Biological Chemistry , 290(47), 28477-28488.
- . Interface Focus, 5(4).
- . Journal of Materials Chemistry B, 3(21), 4431-4438.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(6-7), 640-655.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(2), 189-201.
- . Archives of Biochemistry and Biophysics, 572, 158-166.
- . Biochemical Journal, 464(3), 315-322.
- . Journal of Biological Chemistry, 289(43), 29927-29936.
- . Biochim Biophys Acta, 1837(10), 1769-1780.
- . Biochemical Journal, 462(3), 433-440.
- . ACS Nano, 8(8), 7858-7869.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(10), 1611-1616.
- . Plant Cell, 26(7), 3051-3061.
- . J Am Chem Soc, 136(26), 9404-9413.
- . Langmuir, 30(28), 8481-8490.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837, e118-e118.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837, e122-e122.
- . Biochim Biophys Acta, 1837(10), 1835-1846.
- . Biochim Biophys Acta, 1843(9), 1978-1986.
- . Plant Cell, 26(3), 1267-1279.
- . Biochem J, 457(1), 163-170.
- . Photosynth Res, 120(1-2), 169-180.
- . Biochemistry, 52(43), 7575-7585.
- . ACS Nano, 7(9), 7610-7618.
- . Chemical Science, 4(10), 3924-3933.
- . Biochim Biophys Acta, 1827(10), 1235-1244.
- . Biochem J, 450(2), 397-405.
- . Biophysical Journal, 103(11), 2352-2360.
- . Biointerphases, 7(1-4), 54.
- . J Biol Chem, 287(33), 27823-27833.
- . Biochimica Et Biophysica Acta Bioenergetics, 1817(9), 1616-1627.
- . Mol Microbiol, 84(6), 1062-1078.
- . Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8570-8575.
- . Optics Express, 20(3), 3311-3324.
- . Opt Express, 20(3), 3311-3324.
- . J Biol Chem, 287(7), 4946-4956.
- . Physical Chemistry Chemical Physics, 14(2), 616-625.
- . ISME J, 6(4), 875-885.
- Use of Engineered Unique Cysteine Residues to Facilitate Oriented Coupling of Proteins Directly to a Gold Substrate. Photochemistry and Photobiology.
- . Photochem Photobiol, 87(5), 1050-1057.
- . Biochimica Et Biophysica Acta Bioenergetics, 1807(9), 1044-1055.
- . BBA-BIOENERGETICS, 1807(9), 1056-1063.
- . BIOPHYS J, 100(9), 2226-2233.
- . J BIOL CHEM, 286(23), 20313-20322.
- . Chemphyschem, 12(3), 518-531.
- . FEBS Lett, 585(1), 183-186.
- . FEBS Letters, 585(1), 183-186.
- . Physical Chemistry Chemical Physics, 13(6), 2307-2313.
- . PLANT PHYSIOL, 155(4), 1735-1747.
- . Biochim Biophys Acta, 1807(1), 95-107.
- . BIOCHEMISTRY-US, 49(35), 7524-7531.
- . NEW J PHYS, 12.
- . BIOPHYS J, 99(1), 67-75.
- . Mol Microbiol, 76(4), 833-847.
- . NANO LETT, 10(4), 1450-1457.
- . J PHYS CHEM B, 114(12), 4335-4344.
- . BBA-BIOMEMBRANES, 1798(3), 637-645.
- . J BIOL CHEM, 285(3), 2113-2119.
- . Anal Biochem, 394(2), 223-228.
- . APPL PHYS LETT, 94(17).
- . BIOCHEM SOC T, 37, 387-391.
- . BIOCHEMISTRY-US, 48(17), 3679-3698.
- . Chem Phys, 357(1-3), 188-197.
- . J Am Chem Soc, 131(3), 896-897.
- . BIOPHYS J, 96(5), 1902-1910.
- . Biophys J, 97(1), 321-329.
- . NATURE, 456(7224), 1001-U89.
- . J Biol Chem, 283(45), 30772-30779.
- . J AM CHEM SOC, 130(28), 8892-+.
- . J Biol Chem, 283(20), 14002-14011.
- . J BACTERIOL, 190(6), 2086-2095.
- . NANOTECHNOLOGY, 19(2).
- . BIOPHYS J, 94(2), 640-647.
- . J Am Chem Soc, 129(47), 14625-14631.
- Nanoscale patterning of photosynthetic light harvesting proteins. European Cells and Materials, 14(SUPPL.3), 46.
- . Biochemistry, 46(44), 12788-12794.
- . P NATL ACAD SCI USA, 104(40), 15723-15728.
- . Biochemistry, 46(27), 8121-8127.
- . FEBS Lett, 580(30), 6967-6971.
- , 428-431.
- . Microscopy and Microanalysis, 12(SUPPL. 2), 36-37.
- . J Biol Chem, 281(37), 26847-26853.
- . Development, 133(15), 2973-2981.
- . J PHYS CHEM B, 110(7), 3354-3361.
- . Biochem J, 394(Pt 1), 243-248.
- . BIOPHYS J, 90(7), 2475-2485.
- . BIOPHYS J, 90(7), 2463-2474.
- . PLANT MOL BIOL, 60(1), 95-106.
- . Photochem Photobiol Sci, 4(12), 1023-1027.
- . Photochem Photobiol Sci, 4(12), 1055-1059.
- . CHEM PHYS LETT, 414(4-6), 359-363.
- . Trends Biochem Sci, 30(11), 642-649.
- . FEBS J, 272(17), 4532-4539.
- . J Mol Biol, 349(5), 948-960.
- . Biochemistry, 44(21), 7603-7612.
- . BBA-BIOENERGETICS, 1706(3), 220-231.
- Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J MICROSC-OXFORD, 217, 109-116.
- . P NATL ACAD SCI USA, 101(52), 17994-17999.
- . CHEM PHYS LETT, 398(4-6), 384-388.
- . Biochem J, 382(Pt 3), 1009-1013.
- . Developmental Cell, 7(3), 288-289.
- . Nature, 430(7003), 1058-1062.
- . Biochemistry, 43(25), 8265-8271.
- . J PHYS CHEM B, 108(29), 10398-10403.
- . J PHYS CHEM B, 108(29), 10581-10588.
- . J Biol Chem, 279(26), 26893-26899.
- . J BIOL CHEM, 279(20), 21327-21333.
- . EMBO J, 23(4), 690-700.
- . J Biol Chem, 279(3), 2063-2068.
- . Biochemistry, 42(51), 15114-15123.
- . BBA-BIOENERGETICS, 1607(1), 19-26.
- . Biochemistry, 42(22), 6912-6920.
- . Nat Struct Biol, 10(6), 491-492.
- . J Biol Chem, 278(26), 23678-23685.
- . Biochem J, 371(Pt 2), 351-360.
- . Biochemistry, 42(2), 523-528.
- . Proc Natl Acad Sci U S A, 99(17), 11145-11150.
- . Biochem Soc Trans, 30(4), 601-604.
- . Biochem Soc Trans, 30(4), 643-645.
- . EMBO J, 21(15), 3927-3935.
- . Nature, 418(6894), 203-206.
- . BIOCHEMISTRY-US, 41(27), 8698-8707.
- . Biochemical Society Transactions, 30(3), A77-A77.
- . Biochemical Society Transactions, 30(3), A48-A48.
- . Biochemical Society Transactions, 30(3), A74-A74.
- . Biochemical Society Transactions, 30(3), A75-A75.
- . Biochemical Society Transactions, 30(3), A50-A50.
- . Mol Microbiol, 44(1), 233-244.
- . J PHYS CHEM A, 106(33), 7573-7578.
- . J Bacteriol, 184(6), 1578-1586.
- . BIOCHEMISTRY-US, 41(12), 4127-4136.
- Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment. J MOL BIOL, 318(4), 1085-1095.
- . Biochemistry, 40(31), 9291-9299.
- . BIOCHEMISTRY-US, 40(12), 3737-3747.
- Cloning, sequencing and analysis of the pucC genes from Rubrivivax gelatinosus strain 151 and Rhodopseudomonas acidophila strain 10050. PHOTOSYNTH RES, 65(1), 69-82.
- Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation. BIOCHEM J, 352, 435-441.
- . FEBS Lett, 483(1), 47-51.
- . The Journal of Cell Biology, 150(2), 391-402.
- . J Bacteriol, 182(11), 3175-3182.
- The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. P NATL ACAD SCI USA, 97(10), 5197-5202.
- . J Mol Biol, 298(1), 83-94.
- Introduction of a 60 fs deactivation channel in the photosynthetic antenna LH1 by Ni-bacteriopheophytin a. CHEM PHYS LETT, 319(1-2), 145-152.
- Minimal requirements for in vitro reconstitution of the structural subunit of light-harvesting complexes of photosynthetic bacteria. PHOTOSYNTH RES, 62(1), 85-98.
- . J Bacteriol, 181(23), 7248-7255.
- Modeling of oligomeric-state dependent spectral heterogeneity in the B875 light-harvesting complex of Rhodobacter sphaeroides by numerical simulation. J PHYS CHEM B, 103(36), 7733-7742.
- Introduction of a new branchpoint in tetrapyrrole biosynthesis in Escherichia coli by co-expression of genes encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase. FEBS LETT, 455(3), 349-354.
- ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits.. Biochem J, 339 ( Pt 1)(Pt 1), 127-134.
- . Biochemical Journal, 339(1), 127-134.
- A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. BIOPOLYMERS, 49(5), 361-372.
- Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex.. Biochem J, 337 ( Pt 2)(Pt 2), 243-251.
- . Biochemical Journal, 337(2), 243-251.
- The photosynthesis gene cluster of Rhodobacter sphaeroides. PHOTOSYNTH RES, 62(2-3), 121-139.
- Carotenoid diversity: a modular role for the phytoene desaturase step. TRENDS PLANT SCI, 3(11), 445-449.
- . J Mol Biol, 282(4), 833-845.
- . Biochim Biophys Acta, 1366(3), 301-316.
- . Biochem J, 334 ( Pt 2)(Pt 2), 335-344.
- Optical dephasing in photosynthetic pigment-protein complexes. CHEM PHYS, 233(2-3), 311-322.
- Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: Evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex. BIOCHEMISTRY-US, 37(31), 11055-11063.
- Ultrafast carotenoid band shifts probe structure and dynamics in photosynthetic antenna complexes. BIOCHEMISTRY-US, 37(20), 7057-7061.
- Structural studies of wild-type and mutant reaction centers from an antenna-deficient strain of Rhodobacter sphaeroides: Monitoring the optical properties of the complex from bacterial cell to crystal. BIOCHEMISTRY-US, 37(14), 4740-4750.
- Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. BIOCHEMISTRY-US, 37(14), 4693-4698.
- Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J BACTERIOL, 180(3), 699-704.
- . Springer Series in Chemical Physics, 63, 669-671.
- Molecular characterization of the pifC gene encoding translation initiation factor 3, which is required for normal photosynthetic complex formation in Rhodobacter sphaeroides NCIB 8253. EUR J BIOCHEM, 249(2), 564-575.
- Influence of the protein binding site on the absorption properties of the monomeric bacteriochlorophyll in Rhodobacter sphaeroides LH2 complex. BIOCHEMISTRY-US, 36(51), 16282-16287.
- . Biochemistry, 36(41), 12625-12632.
- . Biochemistry, 36(37), 11282-11291.
- Characterization of the light-harvesting antennas of photosynthetic purple bacteria by stark spectroscopy .2. LH2 complexes: Influence of the protein environment. J PHYS CHEM B, 101(37), 7293-7301.
- Characterization of the light-harvesting antennas of photosynthetic purple bacteria by stark spectroscopy .1. LH1 antenna complex and the B820 subunit from Rhodospirillum rubrum. J PHYS CHEM B, 101(37), 7284-7292.
- Isolation of a fragment of the CHLH gene of magnesium chelatase from Chlamydomonas reinhardtii. PHYCOLOGIA, 36(4), 36-37.
- Evaluation of structure-function relationships in the core light-harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptides. BIOCHEMISTRY-US, 36(12), 3671-3679.
- Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. BIOCHEMISTRY-US, 36(10), 2772-2778.
- Controlling energy transfer within light-harvesting complexes. BIOPHYS J, 72(2), TH417-TH417.
- . J Biomol NMR, 9(4), 389-395.
- Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. EUR J BIOCHEM, 235(1-2), 438-443.
- . FEBS Lett, 389(2), 126-130.
- . J Biol Chem, 271(28), 16662-16667.
- . J Biol Chem, 271(23), 13356-13361.
- . Plant Physiol, 111(1), 61-71.
- . J Biol Chem, 271(6), 3285-3292.
- . Springer Series in Chemical Physics, 62, 314-315.
- The purple bacterial photosynthetic unit. PHOTOSYNTH RES, 48(1-2), 55-63.
- Stark spectroscopy on light harvesting complex 1 and B820. PROG BIOPHYS MOL BIO, 65, PE209-PE209.
- TIME-RESOLVED AND STEADY-STATE SPECTROSCOPIC ANALYSIS OF MEMBRANE-BOUND REACTION CENTERS FROM RHODOBACTER-SPHAEROIDES - COMPARISONS WITH DETERGENT-SOLUBILIZED COMPLEXES. BIOCHEMISTRY-US, 34(45), 14712-14721.
- Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. P NATL ACAD SCI USA, 92(26), 12333-12337.
- . J Biol Chem, 270(40), 23875-23882.
- ENERGY MIGRATION IN RHODOBACTER-SPHAEROIDES MUTANTS ALTERED BY MUTAGENESIS OF THE PERIPHERAL LH2 COMPLEX OR BY REMOVAL OF THE CORE LH1 COMPLEX. BBA-BIOENERGETICS, 1231(1), 89-97.
- . J Bacteriol, 177(8), 2064-2073.
- . Proc Natl Acad Sci U S A, 92(6), 1941-1944.
- . Journal of Molecular Biology, 252(1), 153-153.
- . Curr Biol, 5(8), 826-828.
- . Photochem Photobiol, 60(6), 521-535.
- . FEMS Microbiol Lett, 116(3), 269-275.
- ENHANCED RATES OF SUBPICOSECOND ENERGY-TRANSFER IN BLUE-SHIFTED LIGHT-HARVESTING LH2 MUTANTS OF RHODOBACTER-SPHAEROIDES. BIOCHEMISTRY-US, 33(27), 8300-8305.
- COHERENT DYNAMICS DURING THE PRIMARY ELECTRON-TRANSFER REACTION IN MEMBRANE-BOUND REACTION CENTERS OF RHODOBACTER-SPHAEROIDES. BIOCHEMISTRY-US, 33(22), 6750-6757.
- TRAPPING KINETICS IN MUTANTS OF THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOBACTER-SPHAEROIDES - INFLUENCE OF THE CHARGE SEPARATION RATE AND CONSEQUENCES FOR THE RATE-LIMITING STEP IN THE LIGHT-HARVESTING PROCESS. BIOCHEMISTRY-US, 33(11), 3143-3147.
- . FEBS Lett, 339(1-2), 18-24.
- . FEBS Lett, 352(2), 127-130.
- . FEBS Lett, 349(3), 349-353.
- COHERENT NUCLEAR-DYNAMICS AT ROOM-TEMPERATURE IN BACTERIAL REACTION CENTERS. P NATL ACAD SCI USA, 91(26), 12701-12705.
- . Proc Natl Acad Sci U S A, 91(15), 7124-7128.
- VIBRATIONAL DYNAMICS IN THE LIGHT-HARVESTING COMPLEXES OF THE PHOTOSYNTHETIC BACTERIUM RHODOBACTER-SPHAEROIDES. CHEM PHYS LETT, 224(3-4), 345-351.
- EXCITON DYNAMICS IN THE LIGHT-HARVESTING COMPLEXES OF RHODOBACTER-SPHAEROIDES. CHEM PHYS LETT, 224(3-4), 355-365.
- . J Bacteriol, 176(13), 3859-3869.
- INFLUENCE OF THE MEMBRANE ENVIRONMENT ON VIBRATIONAL MOTIONS IN REACTION CENTERS OF RHODOBACTER-SPHAEROIDES. BBA-BIOENERGETICS, 1186(1-2), 117-122.
- . J Bacteriol, 176(12), 3692-3697.
- . Biochem J, 299 ( Pt 3)(Pt 3), 695-700.
- . Curr Biol, 4(4), 344-346.
- . Biochem J, 298 ( Pt 1)(Pt 1), 197-205.
- PROBING THE B800 BACTERIOCHLOROPHYLL BINDING-SITE OF THE ACCESSORY LIGHT-HARVESTING COMPLEX FROM RHODOBACTER-SPHAEROIDES USING SITE-DIRECTED MUTANTS .1. MUTAGENESIS, EFFECTS ON BINDING, FUNCTION AND ELECTROCHROMIC BEHAVIOR OF ITS CAROTENOIDS. BBA-BIOENERGETICS, 1183(3), 473-482.
- PROBING THE B8OO BACTERIOCHLOROPHYLL BINDING-SITE OF THE ACCESSORY LIGHT-HARVESTING COMPLEX FROM RHODOBACTER-SPHAEROIDES USING SITE-DIRECTED MUTANTS .2. A LOW-TEMPERATURE SPECTROSCOPY STUDY OF STRUCTURAL ASPECTS OF THE PIGMENT-PROTEIN CONFORMATION. BBA-BIOENERGETICS, 1183(3), 483-490.
- DIRECT ENERGY-TRANSFER FROM THE PERIPHERAL LH2 ANTENNA TO THE REACTION-CENTER IN A MUTANT OF RHODOBACTER-SPHAEROIDES THAT LACKS THE CORE LH1 ANTENNA. BIOCHEMISTRY-US, 32(39), 10314-10322.
- . Chemical Physics Letters, 212(6), 569-580.
- . Biochem Soc Trans, 21(1), 41-43.
- . Mol Gen Genet, 236(2-3), 227-234.
- A PUTATIVE ANAEROBIC COPROPORPHYRINOGEN-III OXIDASE IN RHODOBACTER-SPHAEROIDES .1. MOLECULAR-CLONING, TRANSPOSON MUTAGENESIS AND SEQUENCE-ANALYSIS OF THE GENE. MOL MICROBIOL, 6(21), 3159-3169.
- . Mol Microbiol, 6(9), 1173-1184.
- . Mol Microbiol, 6(21), 3171-3186.
- . Biochemistry, 31(18), 4458-4465.
- SITE-DIRECTED MUTAGENESIS OF THE LH2 COMPLEX OF RHODOBACTER-SPHAEROIDES. PHOTOSYNTH RES, 34(1), 110-110.
- THE EFFECT OF MUTATIONS IN THE CRTI/B OPERON ON ASSEMBLY OF THE LH2 COMPLEX IN RHODOBACTER-SPHAEROIDES. PHOTOSYNTH RES, 34(1), 111-111.
- PROTEIN ENGINEERING OF THE REACTION CENTRE/LH1 CORE COMPLEX FROM RHODOBACTER-SPHAEROIDES. PHOTOSYNTH RES, 34(1), 187-187.
- SPECTROSCOPIC CHARACTERIZATION OF B820 SUBUNITS FROM LIGHT-HARVESTING COMPLEX-I OF RHODOSPIRILLUM-RUBRUM AND RHODOBACTER-SPHAEROIDES PREPARED WITH THE DETERGENT N-OCTYL-RAC-2,3-DIPROPYLSULFOXIDE. BIOCHIM BIOPHYS ACTA, 1100(3), 259-266.
- Isolation and characterization of a putative transcription factor involved in the regulation of the Rhodobacter sphaeroides pucBA operon.. J Biol Chem, 267(16), 11098-11103.
- . Nature, 355(6363), 848-850.
- . Mol Microbiol, 5(11), 2649-2661.
- . Mol Microbiol, 4(6), 977-989.
- ENERGY-TRANSFER DYNAMICS IN 3 LIGHT-HARVESTING MUTANTS OF RHODOBACTER-SPHAEROIDES - A PICOSECOND SPECTROSCOPY STUDY. BIOCHEMISTRY-US, 29(13), 3203-3207.
- MOLECULAR-CLONING, SEQUENCING AND EXPRESSION OF CYTOCHROME-C2 FROM RHODOSPIRILLUM-RUBRUM. BIOCHEM J, 265(2), 599-604.
- TEMPERATURE-DEPENDENCE OF ENERGY-TRANSFER FROM THE LONG WAVELENGTH ANTENNA BCHL-896 TO THE REACTION CENTER IN RHODOSPIRILLUM-RUBRUM, RHODOBACTER-SPHAEROIDES (WT AND M21 MUTANT) FROM 77 TO 177K, STUDIED BY PICOSECOND ABSORPTION-SPECTROSCOPY. PHOTOSYNTH RES, 22(3), 211-217.
- . Microbiology, 135(7), 1809-1816.
- . Archives of Microbiology, 151(5), 454-458.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 973(3), 383-389.
- . Journal of Biological Chemistry, 264(24), 14129-14135.
- PHOTOSYNTHETIC ANTENNA PROTEINS - 100 PS BEFORE PHOTOCHEMISTRY STARTS. TRENDS BIOCHEM SCI, 14(2), 72-75.
- . Photochemistry and Photobiology, 48(2), 243-247.
- . Biochemistry, 27(9), 3459-3467.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 933(1), 132-140.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 932, 179-188.
- . FEBS Letters, 213(2), 245-248.
- . Biochemical Journal, 247(2), 489-492.
- . FEBS Letters, 209(1), 83-86.
- . FEMS Microbiology Letters, 27(2), 155-159.
- . Biochemical Journal, 229(3), 701-710.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 807(1), 44-51.
- . FEMS Microbiology Letters, 27(2), 155-159.
- . Journal of Biological Chemistry, 260(6), 3295-3304.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 765(2), 156-165.
- . Biochemical Society Transactions, 11(4), 340-343.
- . Biochemical Journal, 212(3), 783-790.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 723(1), 30-36.
- Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides.. Progress in Clinical and Biological Research, 102 Pt B, 257-265.
- . Photochemistry and Photobiology, 34(5), 653-656.
- . FEBS Letters, 115(1), 43-48.
- . Biochemical Journal, 186(2), 453-459.
- . Proceedings of the National Academy of Sciences, 77(1), 87-91.
- . Photochemistry and Photobiology, 30(2), 313-316.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 548(3), 458-470.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 548(2), 253-266.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 545(2), 325-338.
- . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 545(2), 339-351.
- . Biochemical Journal, 174(1), 267-275.
- . Biochemical Society Transactions, 4(4), 669-670.
- . Planta, 101(2), 174-179.
- . Nature Communications, 8.
- . Nano Letters, 16(11), 6850-6856.
- . ACS Nano.
Book chapters
- , Methods in Enzymology (pp. 137-184). Elsevier
- Photosynthetic apparatus in purple bacteria, Light Harvesting in Photosynthesis (pp. 95-120).
- , NATO Science for Peace and Security Series B: Physics and Biophysics (pp. 143-165). Springer Netherlands
- , Tetrapyrroles (pp. 235-249). Springer New York
- , Advances in Photosynthesis and Respiration (pp. 155-179). Springer Netherlands
- , The Phototrophic Prokaryotes (pp. 139-147). Springer US
- , Photosynthesis: Mechanisms and Effects (pp. 81-84). Springer Netherlands
- , Photosynthesis: Mechanisms and Effects (pp. 37-40). Springer Netherlands
- , Photosynthesis: Mechanisms and Effects (pp. 89-92). Springer Netherlands
- , The Reaction Center of Photosynthetic Bacteria (pp. 271-280). Springer Berlin Heidelberg
- , Photosynthetic Prokaryotes (pp. 153-179). Springer US
- , Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria (pp. 49-56). Springer US
- , Current Research in Photosynthesis (pp. 1113-1116). Springer Netherlands
- , Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria (pp. 219-226). Springer US
- , Advances in Photosynthesis and Respiration (pp. 473-501). Kluwer Academic Publishers
Conference proceedings
- Synthetic biological control of quantum optical phenomena. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 255
- Strong coupling of localised surface plasmons to light-harvesting complexes from bacteria and plants. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 253
- . Biophysical Journal, Vol. 112(3) (pp 441a-441a)
- High-resolution Atomic Force Microscopy (AFM) imaging of native biological membrane systems. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, Vol. 46 (pp S368-S368)
- Two-dimensional electronic spectroscopy reveals ultrafast dynamics in photosynthetic bacteria. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 252
- Probing dynamics of delocalization and energy transfer in Rhodobacter sphaeroides using two-dimensional electronic spectroscopy. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 252
- Electronic structure and early-time dynamics of higher-lying excited states in light harvesting complex 1 from Rhodobacter sphaeroides. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 252
- Determination of domain size and light harvesting complex connectivity in Rhodobacter sphaeroides. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 252
- Strong coupling between periodic arrays of gold nanostructures and excitonic states in light-harvesting complexes. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 251
- Simple routes to all-polymeric corrals, flow-channels and traps for studies of lipid and protein diffusion in supported lipid bilayers. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 251
- . Biophysical Journal, Vol. 110(3) (pp 19a-19a)
- Synthesis and nanometer-scale patterning of stimulus-responsive, biofouling-resistant zwitterionic poly(amino acid methacrylate) brushes. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 248
- Nanoscale positioning of multiple proteins by scanning near-field photolithography. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 248
- Biohybrid antenna complexes with native peptide analogs and tunable synthetic chromophores. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 245
- Single designed protein platform with multiple functionalities: Oxidoreductase, oxygen transport, light-harvesting, and light activated electron transfer. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 244
- Enhanced stability of photosynthetic energy transfer proteins on gold surfaces.. BIOPHYSICAL JOURNAL (pp 507A-507A)
- . PHOTOSYNTHESIS RESEARCH, Vol. 86(1-2) (pp 37-48)
- Ultrafast enzymatic reaction dynamics in protochlorophyllide-oxidoreductase. Optics Infobase Conference Papers (pp 388-389)
- Energy production in biological systems probed by electron crystallography. ELECTRON MICROSCOPY AND ANALYSIS 1999(161) (pp 127-132)
- . SPIE Proceedings, Vol. 2370 (pp 242-252)
- Coherent nuclear motions and exciton state dynamics in photosynthetic light-harvesting pigments. European Quantum Electronics Conference Technical Digest (pp 96-97)
- SITE-DIRECTED MUTAGENESIS OF THE LH2 LIGHT-HARVESTING COMPLEX OF RHODOBACTER-SPHAEROIDES - CHANGING BETA-LYS23 TO GLN RESULTS IN A SHIFT IN THE 850 NM ABSORPTION PEAK. PHOTOCHEMISTRY AND PHOTOBIOLOGY, Vol. 57(1) (pp 2-5)
- . Biochemical Society Transactions, Vol. 21(2) (pp 201S-201S)
Preprints
- , arXiv.
- , Cold Spring Harbor Laboratory.
- , arXiv.
- , Cold Spring Harbor Laboratory.
- , Cold Spring Harbor Laboratory.
- , Springer Science and Business Media LLC.
- , arXiv.
- , Cold Spring Harbor Laboratory.
- , Cold Spring Harbor Laboratory.
- .
- Research group
- Professional activities and memberships
-
- 2023-2026: Visiting Professor in Engineering, Oxford University
- 2021: Chinese Academy of Sciences: President’s International Fellowship for Distinguished Scientists
- 2020-26: European Research Council Synergy Award
- 2018: Biochemical Society Keilin Memorial Lecture
- 2015: Delivered the Joel Mandelstam Lecture, Department of Biochemistry, University of Oxford
- 2014: Delivered the Inspiring Wisdom Distinguished Lecture, Shanghai JiaoTong University.
- 2013 - 18: European Research Council Advanced Award
- 2013 - 16: Honorary Professor, Shanghai JiaoTong University.
- 2013: Delivered the 21st Masters Distinguished Lecture, Shanghai JiaoTong University
- 2012: Chinese Academy of Sciences: Visiting Professorship for Senior International Scientists
- 2012: Honorary Professor, Qinqdao Institute of Bioenergy and Bioprocess Technology
- 2009: Elected to the Fellowship of the Royal Society
- 2007: Delivered The Neuberger Lecture, Novartis Foundation, London
- 2003: Delivered The Drummond Lecture, Queen Mary College, London
- 1996: D.Sc, Bristol University
- 1986: Visiting EMBO Fellowship, Dept Biophysics, Leiden University, The Netherlands
- 1980 - 82: SRC Postdoctoral Fellowship, Department of Biochemistry, Bristol University
- 1978 - 80: Charles and Joanna Busch Postdoctoral Fellowship, Rutgers University, NJ, USA